A problem in additive number theory
نویسندگان
چکیده
منابع مشابه
Sidon in Additive Number Theory . on a Problem of Sidon in Additive Number Theory and on Some Related Problems Addendum
In a note in this Journal [16 (1941), 212-215], Turan and I proved, among other results, the following : Let a l < a2 < . . . < a, < n be a sequence of positive integers such that the sums aj+a; are all different . Then x < n'1 +0(n1 ) . On the other hand, there exist such sequences with x >n1(2---e), for any e >0 . Recently I noticed that J . Singer, in his paper "A theorem in finite projectiv...
متن کاملA Lattice Point Problem and Additive Number Theory
For every dimension d ≥ 1 there exists a constant c = c(d) such that for all n ≥ 1, every set of at least cn lattice points in the d-dimensional Euclidean space contains a subset of cardinality precisely n whose centroid is also a lattice point. The proof combines techniques from additive number theory with results about the expansion properties of Cayley graphs with given eigenvalues.
متن کاملSome Problems in Additive Number Theory
(3) f(x) = (log x/log 2) + 0(1)? 1\Mloser and I asked : Is it true that f(2 11) >_ k+2 for sufficiently large k? Conway and Guy showed that the answer is affirmative (unpublished) . P. Erdös, Problems and results in additive number theory, Colloque, Théorie des Nombres, Bruxelles 1955, p . 137 . 2. Let 1 < a 1< . . . < ak <_ x be a sequence of integers so that all the sums ai,+ . . .+ais, i 1 <...
متن کاملFourier Analytic Methods in Additive Number Theory
In recent years, analytic methods have become prominent in additive number theory. In particular, finite Fourier analysis is well-suited to solve some problems that are too difficult for purely combinatorial techniques. Among these is Szemerédi’s Theorem, a statement regarding the density of integral sets and the existence of arithmetic progressions in those sets. In this thesis, we give a gene...
متن کاملAn asymptotic formula in additive number theory
1 . Introduction . In his paper [1], Erdös introduced the sequences of positive integers b 1 < b, < . . ., with (b ;, bj ) = 1, for i ~A j, and 'bi 1 < oo . With any such arbitrary sequence of integers, he associated the sequence {di} of all positive integers not divisible by any bj , and he showed that if b1 > 2, there exists a 0 < 1 (independent of the sequence {b i }) such that d i 1 di < d°...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1973-0309893-3